
MySQL on ZFS for Linux
It’s not just for backups anymore



MySQL on ZFS for Linux for Backups

Copy on write

○ Pay the price in performance up front
○ But backups are cheap on the backend



More data is like rising oil prices
The tradeoff becomes more compelling as logs and data grow into the terabytes

Backups and point-in time recovery become more expensive

But what about performance?



The price of ZFS is coming down

“We can have zfs beat ext4 on perf if we do some I/O scheduler tuning.” 

Alek Pinchuk



Start with MySQL Tuning
Given that we’re using SSDs, there no need to reduce seek times

Innodb_flush_neighbors          = 0

Use checksum algorithm that scans block 32, instead of 8, bits at a time and can 
take advantage of optimized hardware

innodb_checksum_algorithm = crc32

Bypass database buffering and rely on ZFS  
Innodb_doublewrite          = 0
innodb_flush_method       = O_DSYNC



Baseline ext4: mdadm RAID 1 on 120GB Kingston
/dev/md0:

     Raid Level : raid1

     Array Size : 105355264 (100.47 GiB 107.88 GB)

  Used Dev Size : 105355264 (100.47 GiB 107.88 GB)

   Raid Devices : 2

  Total Devices : 2

    Persistence : Superblock is persistent

  Intent Bitmap : Internal

  Spare Devices : 0



Baseline: MySQL on ext4 with MySQL Tuning



Add ZFS: 3 Mirrors on 120GB Kingston Consumer
mysql                                            

  mirror-0                                       

    ata-KINGSTON_SUV400S37120G_50026B77770488B4  

    ata-KINGSTON_SUV400S37120G_50026B7777048D5D  

  mirror-1                                       

    ata-KINGSTON_SUV400S37120G_50026B7777048E50  

    ata-KINGSTON_SUV400S37120G_50026B7777048E6B  

  mirror-2                                       

    ata-KINGSTON_SUV400S37120G_50026B77770488B0  

    ata-KINGSTON_SUV400S37120G_50026B77770488AF  



MySQL on ZFS: MySQL Tuning ONLY



ZFS Tuning: Where we started
in "/etc/modprobe.d/zfs.conf" so that they persist across reboots:

Give as much ARC as possible without starving the database buffer pool
options zfs zfs_arc_max=17179869184

ZFS prefetch not needed because MySQL InnoDB will handle that

options zfs zfs_prefetch_disable=1

Influences how often dirty data is flushed to disk; align with disk capacity to prevent stalling

options zfs zfs_txg_timeout=2

Complements timeout above; write as much data as possible as frequently as possible to minimize disk idle time

options zfs zfs_dirty_data_max=268435456



ZFS I/O scheduler tuning: What we added
OpenZFS has separate I/O classes for read, write and scan (repair) I/O.

Each I/O class controls the min and max number of in-flight I/Os we will issue per drive

The default settings are optimized for spinning disks. Since SSDs are faster and are able to deal with more I/O at a time than HDDs:

option zfs zfs_vdev_sync_read_max_active=32

option zfs zfs_vdev_async_read_max_active=32

option zfs zfs_vdev_sync_write_max_active=32

option zfs zfs_vdev_async_write_max_active=32

We increased maximum number of in-flight I/Os of each read and write class to 32

I/O scheduler tuning is hardware specific

Raising the max_active eventually causes higher latencies for other classes



MySQL on ZFS with Tuning



Why does this work?
We’ve increased the number of I/Os being send to disk in order to take advantage 
of our SSDs



MySQL on ZFS for All Systems
Because we can achieve the required low latency throughput, we are rolling ZFS 
out to all our MySQL hosts.

● Fast snapshot and point in-time recovery
○ No need for rsync, xtradbbackup or mysqldump, or even binary logs

● Encryption
○ No need for LUKS

Help Wanted!



Resources
For more info on Open ZFS tuning see:

http://dtrace.org/blogs/ahl/2014/08/31/openzfs-tuning/

https://zfs.datto.com/slides/pinchuk.pdf

For more info on MySQL on ZFS see:

https://www.percona.com/blog/2017/11/15/zfs-from-a-mysql-perspective/

http://dtrace.org/blogs/ahl/2014/08/31/openzfs-tuning/
https://zfs.datto.com/slides/pinchuk.pdf
https://www.percona.com/blog/2017/11/15/zfs-from-a-mysql-perspective/

