
The Meltdown attack
A clever attack against an obscure flaw.

Fred Mora - System Engineering, Datto

1

Agenda

● What is Meltdown?

● How does it work?

● Has it been exploited yet?

● Mitigation

Ooooh, look, a bug with a logo, so we
know it’s for real!

Disclaimer

● That stuff is complicated

● This is not a bloody academic class

● I tried to simplify things and make them
accessible

● I hope I didn’t completely blow it with
oversimplification

● But keep in mind that there is more to it, so
refer to primary sources if you feel frisky
want to understand the whole problem.

What is Meltdown?

● Not much.

● It’s just a flaw affecting all Intel processors

● And maybe some other architectures as well

● And you cannot fix it because it depends on
the processor hardware

● Actually, to this day, Intel does not seem to
have a plan for a fix.

● AMD is immune, though.

All right, what did you geeks break now?

What is Meltdown? (cont’d)

● Yeah, getting old.

● Some insiders blame Intel management for
cutting the Architecture Validation dept

● These guys were doing architecture review

● When you cut QA, you get more bugs...

● The reason is that the validation was
slowing things down.

● And was costly, too.

● To their credit, this is not an obvious flaw.

OMG. Another Intel bug?

How does Meltdown work?

● First, we need to know about out-of-order
execution and speculative execution.

● The CPU has several internal computation
units.

● If a program keeps them all busy, it will run
much faster.

● Some program statements depend on each
other, other are independent.

● Example:
R1, R2, etc. are registers (a.k.a internal
memory)
R1 = R2 * 5
R3 = R4 + 2
R5 = R1 +1

● The CPU can simultaneously calculate the
values of R1 and R3, in any order.

● But it has to wait until R1 is computed to
calculate R5

What did they do this time?

How does Meltdown work? (cont’d)

● We also need to know about speculative
execution.

● When the program hits a test (e.g., an IF
statement), it cannot decide which path to
follow until the tested value can be
calculated

● This can leave internal computing units idle.

● So why not take some educated guesses
and try to optimize this?

● We look at the most likely branch of the test and
we execute it on a copy of the registers.

● We keep the changes in this auxiliary register
banks until we can decide

● Then either:

– we commit: we validate the
calculations and transfer the aux
register values to the actual registers

– Or we retire: we scrape these
calculations.

● By keeping executing instructions in parallel, the
CPU increases throughput.

OK, what else?

How does Meltdown work? (cont’d)

● Now let’s talk about memory protection.

● The CPU keeps track of memory by pages
(e.g. 4 Kbytes on Linux).

● Pages belong to the user space or the kernel
space

● User processes cannot access kernel pages
or pages belonging to different processes.

Go on...

How does Meltdown work? (cont’d)

● Almost! Let’s also discuss caching.

● The CPU clock runs much faster than RAM
access.

● Also, it’s faster to access consecutive
addresses in RAM.

● So the CPU keeps recently accessed RAM in
its local cache

● There is actually 3 levels of cache on a
modern CPU

Are we done with the boring exposition? What is this, Charles Dickens?

Intel i7 core cache organization
Credit: Tom’s Hardware

How does Meltdown work? (cont’d)

● The catch is that the Good Idea Fairy visited
the Intel CPU designers.

● Note that the Good Idea Fairy has an evil
twin sister called the Bug Fairy, and it’s hard
to tell which one visits you.

Sounds reasonable so far. What’s the catch?

From Andy Weir’s old online comic
Casey and Andy

How does Meltdown work? (cont’d)

● Memory protection is a royal pain to
implement, see.

● And slow, too.

● So why not disable it during speculative
execution?

● After all, if a memory access turns out to be
forbidden, the instructions will never be
committed, and the result will remain
unseen.

Er, what was the good idea?

How does Meltdown work? (cont’d)

● Let’s combine the ingredients we reviewed into a
little recipe.

● Say I have a memory location that my program
cannot read, called PROTECTED

● And an address that I can read, called READABLE,
that I haven’t touched yet.

● I write the content of address A as [A].

● My program contains this:

if (bit 0 of [PROTECTED] == 1) {
 [READABLE] = 0
}

● With a few well-crafted loops, I coerce the CPU into
speculatively executing the contents of the if
branch.

● In case the lowest bit of PROTECTED is indeed 1,
the READABLE address will be accessed

● Which means that it will be loaded in the CPU
cache, even though the branch will always be
discarded.

● Then, I read that same location again and measure
the timing. Is it fast or slow?

● If it’s fast, it means READABLE is in the cache…

● Which means I now have one bit of PROTECTED.

● Whooo… I know a secret!

I have a bad feeling about this...

How does Meltdown work? (cont’d)

● I can extend this recipe and recover several
bits at once

● And then I can iterate through the memory

● It’s tedious, but computers are very good at
tedious things.

● Ultimately, from a user process, I can read
the memory of the whole computer.

● As a demo, one of the original researchers
showed how to dump the passwords stored
in his browser process!

All of that for one bit? Big deal.

Has Meltdown been exploited?

● Yeah, big deal indeed.

● But the flaw has not been exploited yet

● Exploit requires executing unknown code on
your machine

● Your editor and email client won’t start
trying to dump your memory suddenly

● But if you are running customer VMs…

● You are at the mercy of the first bad apple.

● A variant of this timing attacks have also
been implemented in javascript

● Firefox and Chrome (among others) have
incorporated protection against these
attacks

● Make sure you use the latest browser
versions.

Eeep!

Mitigation (cont’d)

● The patches come with a kernel boot option
called nopti to disable the patches

● If your favorite programs are slowing down,
and you aren’t running random code all the
time, you might disable KPTI at boot.

● If you are running VMs with customer-
provided or unknown content, keep KPTI
active.

● Patch the kernel and reboot.

What if I fnd that the KPTI patches slow down my games?

Mitigation

● Among others

● If you run unknown programs in VMs, you
are a textbook target

● You need to update the kernel ASAP.

● The mitigation patches work by flushing the
cache in cases that can be exploited

● There is no more timing difference because
all access cases are slower.

● Slow down to be determined.

● The kernel fixes started their life as KAISER

● Linus asked for something more neutral

● Acronyms UASS and FUCKWIT were briefly
considered

● The final name for the patches is KPTI
(Kernel Page Table Isolation).

So VM hosts are at risk?

Questions?

	Presentation title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

