
Software Bundles and Linux
Neal Gompa (Conan Kudo [ニール・ゴンパ])



Who am I?
● Professional technologist

● Contributor and package maintainer in the 

Fedora Project

● Contributor and package maintainer in 

Mageia Linux

● Contributor to RPM, DNF, and various 

related projects

● Diligent follower of the telecommunications 

industry

● Production Engineer at Datto, Inc.

Contact Points:

● Twitter: @Det_Conan_Kudo

● Google+: +NealGompa

https://admin.fedoraproject.org/pkgdb/packager/ngompa/
https://admin.fedoraproject.org/pkgdb/packager/ngompa/
https://admin.fedoraproject.org/pkgdb/packager/ngompa/
https://people.mageia.org/u/ngompa.html
https://people.mageia.org/u/ngompa.html
https://people.mageia.org/u/ngompa.html
https://twitter.com/det_conan_kudo
https://plus.google.com/+NealGompa


Recap on software management in Linux...



Software management in Linux vs other platforms...
Unlike most operating system platforms, Linux is made of several software 

components made by many different authors that are developed completely 

independently.

Consequently, Linux distributions came into existence to collect these components 

and put together a coherent system that can be used by people. Package managers and 

dependency resolvers were developed to solve this problem.



Packaging Systems on Linux
Most Linux distributions are descended from one of three Linux distribution families:

● Debian: The Debian family uses DPKG as its package system, and uses APT as the dependency resolver.

● Red Hat/Fedora: The Red Hat/Fedora family uses RPM as its package system, and primarily uses either 

Yum or DNF as the dependency resolver.

● SUSE: The SUSE family started out as a German translation of Slackware, but adopted RPM in the 

mid-90s to offer superior software management capabilities to attract a wider audience. It primarily uses 

Zypper as its dependency resolver.

Thus, most Linux distributions use either DPKG or RPM. There are a few other notable systems, but these two 

are the most common ones.



Overview of RPM and DPKG
RPM:

The RPM Package Manager was created by Red Hat in 1995 to replace 

their earlier iterations in the first versions of Red Hat Linux.

It uses the RPM format for binaries (and has a variant for storing 

source packages) and has a framework to support a wide variety of 

platforms and flexible dependency management.

It is used by Red Hat Enterprise Linux/CentOS, Fedora, 

SUSE/openSUSE, Mageia, and many others.

Notable front-ends for it are: 

● DNF

● Yum

● Zypper

● Smart

DPKG:

The Debian package manager was created by Debian in 1994 for the 

Debian Linux distribution.

It uses the DEB format for binaries, and is designed as a framework that 

integrates tightly with various aspects of a Debian system (installation, 

configuration, etc.)

Debian and Ubuntu (and derivatives) are the primary users of this 

system.

Notable front-ends for it are:

● APT

● Smart



So these systems work great, right?
In practice, they do work well most of the time. However, there are a few problems:

● Packaging systems, as a general rule, are not interoperable. 

○ RPMs on DPKG managed systems and DEBs on RPM managed systems don’t generally work, requiring publishing in multiple 

formats

■ This is not completely true, as there have been two independent efforts to provide compatibility: Alien (converts packages between 

formats) and RPM5 (supports managing multiple packaging systems within a unified architecture). The former is known to be 

brittle and the latter is not a popular solution, due in part to the personalities in the project and internal incompatibilities with 

RPM on an API basis despite being a fork of it.

● It’s impossible to track and safely handle every possible permutation of package sets that is possible.

○ There are simply too many possible mixes to make safe with a reasonable amount of effort.

● Scripts are evil.

○ Scripts in packages often modify the state of the system in ways that are not easy to identify from the package system’s point of 

view, making it difficult to recover when bad scripts run.

● Distributions simply may not be compatible on a binary interface (ABI) level, breaking the expectation of a common Linux 

software package that Just Works.



So how do we solve these problems?



Possible solutions for packaging issues
● Collaborate to unify the binary interfaces across Linux distributions

○ To some extent, this is already happening. As it gets harder to keep up with more rapid development of software, 

the ability for distributions to make themselves “special” continues to be tempered by the need to be able to pull in 

newer software constantly.

● Collaborate to unify the mechanism for packaging software for Linux distributions

○ This is unlikely to happen. While RPM is the standard format that must be supported in some way (as the Linux 

Standards Base indicates), there continues to be arguments about details about all systems used for delivering 

software.

● Reduce the number of Linux distributions

○ This is never going to happen, at least not naturally.

● Provide a distribution-agnostic mechanism to install add-on software

○ This has been attempted many times in the past, though now Linux distributions are more keen on allowing it with 

the maturation of security technologies (SELinux, CGroups, containers, namespacing, etc.)



So what does a distro-agnostic mechanism look like? 
A distribution agnostic mechanism to install add-on software has the key burden to try 

to preserve the security of the system at all costs, as the software is considered 

untrusted (unlike system packages).

A modern system would do the following:

● Automatically encapsulate the software in a sandbox to confine its access to 

resources

● Provide a way for it to export capabilities to the system to leverage

● Allow the user to be aware of what the software needs and how it is using it



Two big solutions for offering software bundles (again!)
Flatpak:

● Created by Alexander Larsson from Red Hat

● Supported by all major Linux distributions 

officially except Ubuntu

● Flatpak creation is distribution-agnostic and 

can be done from any Linux distribution

● Designed around runtimes

● Confinement uses kernel namespaces, 

CGroups, seccomp, and containers, which 

works on all major Linux distributions

Snap:

● Created by Canonical

● Supported officially by Ubuntu, though 

unofficial support is available for many 

distributions

● Snap creation via official tools only works 

through Ubuntu currently

● Originally developed to support Ubuntu 

Touch phone apps, and designed around 

fully bundled applications

● Confinement depends on AppArmor patches 

in the Ubuntu kernel



Technical similarities of the two systems
Flatpak:

● Flatpak bridging is done through mounting 

the environments of different Flatpaks into 

one virtual filesystem and containing them 

together

● Flatpaks support “portals” to bridge the 

Flatpak to the system for specific capabilities 

(such as accessing files through system file 

picker).

● Flatpak Builder uses a single JSON file to 

declare how to construct them

Snap:

● Snap bridging is done through “plugs” and 

“slots” that connect different snaps together 

along a defined interface

● Snaps also support merged filesystems for 

bridging snaps

● Snaps support “interfaces” to bridge the snap 

to the system for specific capabilities (such 

as manipulating network configuration)

● Snapcraft uses a single YAML file to declare 

how to construct them

 



Links to resources
● RPM: http://rpm.org/

● RPM5: http://rpm5.org/

● Alien: http://joeyh.name/code/alien/

● Flatpak: http://flatpak.org/

● Snap: http://snapcraft.io/

http://rpm.org/
http://rpm5.org/
http://joeyh.name/code/alien/
http://flatpak.org/
http://snapcraft.io/

