
The Go Programming The Go Programming
LanguageLanguage
Fred MoraFred Mora

Why another language?
● You can't shake a mouse these days without

hitting a new language

● Scripting languages are a dime a dozen.
Good ones are rare.

– PHP? The 70s called, they want their
patchwork quilt back!

– Python? Nice of you to keep backwards
compatibility... NOT.

● Compiled languages are much less
common

– C is getting long in the teeth

– C++ is to practical languages what a Dali
elephant is to a horse.

What is Go?
● Go is impossible to search. Synonym:

Golang

● Named after the Japanese game

● Open source, BSD-style license

● Sponsored by Google

● Version 1 released in 2012, now at v 1.5.
Backwards compatible incremental changes!

● Design goals:

– Viable for systems programming

– Easy tool chain integration

The Go
mascot

Some Go highlights
● Produces machine code, can call C code

● Garbage collection

● Dynamic typing

● Handy data structures in basic language:

– Strings, arrays, slices, maps

– Many more in libraries

● Pointers but no pointer arithmetics

● Object oriented but classes optional

● Easy concurrency

● Comes with build tools

Rob Pike

Ken Thomson (L)
with

Dennis Ritchie

Backwards compatibility
● Breaking existing code is a serious crime in the Go world

● For maintaining old code, go ships the fix tool that:

– Looks for deprecated language constructs in Go itself

– Looks for old API calls in library calls

– Fixes the code to use modern syntax/API.

● The tool needs config info from libraries. This is part of shipping
a new version of a Go library.

More useful tools
● gofmt formats Go source code the

One True Way. No more coding style
fights!

● godoc extracts docs, creates HTML.

● vet statically analyzes source code
for suspicious signs.

A taste of Go
● This talk is meant to give you a quick overview of what go looks

like.

● We won't discuss advanced concepts such as OOP

● You can code in Go without OOP but you should use OO for
large code

● If you know C or Java, this will look very familiar.

Shut up and show me some code

● Hey, look, no semicolon. But brackets, so yay.

● All Go code is organized in packages.

● A program entry point is function main() in
package main.

package main

import "fmt"

func main() {
fmt.Println("Hello, world!")

}

Export conventions

● Variables starting with a capital are exported automatically.

● All others are internal.

● Here, package math exports constant Pi.

● Look, Ma, no need for complex declarations!

package main

import (
"fmt"
"math"

)

func main() {
fmt.Printf("Have some pi: %g", math.Pi)

}

Functions, strings, array
● Function args and return

type is defined in definition

● Type comes after the
variable name(s)

● Variables have dynamic
types. Here, s is an array of
strings

● The := construct is used to
create a new variable on the
fly.

$ cat prog3.go
package main

import (
"fmt"
"strings"

)

func compliment(x, y, z string) string {
s := []string{x, y, z}
return strings.Join(s, " is a ")

}

func main() {
fmt.Println(compliment("A rose",

"rose", "rose"))
}
$ go run prog3.go
A rose is a rose is a rose

Variables, auto type, multiple return values
● You can declare variables

with var + name and type

● Or you can use := on a new
var and let the compiler
infer the type.

● Functions can return
multiple values

● Lists are simple!

● Undefined vars are
initialized to 0 (int), false
(bool), "" (string)

$ cat prog4.go
package main

import "fmt"

func values_and_sum(x, y int) (int, int,
int) {
 return x, y, x + y
}

func main() {
 var a, b int
 a = 3
 b = 2
 c := a + b
 fmt.Printf("%d + %d = %d\n",

 a, b, c)
 x, y, z := values_and_sum(4, 6)
 fmt.Printf("%d + %d = %d\n",

 x, y, z)
}
$ go run prog4.go
3 + 2 = 5
4 + 6 = 10

Loops
● While and do... until

are for sissies.

● There is only for. All
hail for!

● "for condition" is the
same as "while
condition"

● "for {... }" is the same
as "while true {…}"

$ cat prog6.go
package main

import "fmt"

func main() {
 sum := 0
 for i := 0; i < 10; i++ {
 sum += i
 }
 fmt.Println(sum)
 sum = 0
 for sum < 100 {
 sum++
 }
 fmt.Println(sum)
}
$ go run prog6.go
45
100

Range loops
● The range operator

returns a current index
and current value of an
array or map

$ cat prog8.go
package main

import "fmt"

var pow = []int{1, 2, 4, 8, 16, 32}

func main() {
 for i, v := range pow {
 fmt.Printf("2**%d = %d\n", i, v)
 }
}
$ go run prog8.go
2**0 = 1
2**1 = 2
2**2 = 4
2**3 = 8
2**4 = 16
2**5 = 32

Other constructs
● You also have if...else

and switch...case

● The "defer
statement" executes
statement when the
function exits.
Equivalent of "on
exit".

● Structs like in C

● Maps

$ cat prog9.go
package main

import "fmt"

type Person struct {
name string
age int

}

func main() {
 joe := Person{"Joe", 25}
 fmt.Println(joe)
 job := make(map[string]Person)
 job["Sysadmin"] = Person{"Fred", 39}
 fmt.Println(job["Sysadmin"])
}

$ go run prog7.go
{Joe 25}
{Fred 39}

15

Questions?Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

