
“Atomic” Systems 
and Containers

Neal Gompa (Conan Kudo [ニール・ゴンパ] )



● Professional technologist
● Humble maintainer of a 

handful of packages in the 
Fedora Project

● Diligent follower of the 
telecommunications industry

● Associate SQA Engineer at 
Datto, Inc

Who am I?

Contact Points:
● Twitter: 

@Det_Conan_Kudo
● Google+: 

+NealGompa

https://admin.fedoraproject.org/pkgdb/packager/ngompa/
https://admin.fedoraproject.org/pkgdb/packager/ngompa/
https://admin.fedoraproject.org/pkgdb/packager/ngompa/
https://admin.fedoraproject.org/pkgdb/packager/ngompa/
https://twitter.com/det_conan_kudo
https://twitter.com/det_conan_kudo
https://plus.google.com/+NealGompa
https://plus.google.com/+NealGompa


So… What are atomic systems?

Atomic systems are systems that are built and managed as indivisible units. 
Usually, there’s no visibility into the components that make up the system.

○ For example, a live install of most Linux distributions would be an example of an 
“atomic” installation, as the software is pre-selected, pre-configured, and just applied 
onto the disk that way.

This is contrast with the traditional model, in which systems are highly 
componentized and each component is managed individually.

○ For example, doing an update of individual packages or even installing/removing 
individual packages exposes the componentized nature of the system.



A review of how systems are built...

Today, Linux systems are split up into 
packages. These packages are stored in 
repositories (file trees on the Internet). Access 
to repositories are done through repository 
managers that call package managers to 
install, update, or remove sets of packages.



Why systems are built this way...

In the beginning, Linux systems were put together from sources of programs 
from various sites/servers, meaning that it was functionally impossible to 
construct Linux systems as singular units. Because they were disparate and 
often managed completely separately from distributions that collect and 
distribute code, it didn’t make sense to manage it in that way.

Now, distributions are often modifying and maintaining code separately from 
the projects the code was sourced from in order to maintain working systems. 
From a practical perspective, the distributions are usually now a centrally 
managed source of code/programs, as opposed to something that just grabs 
project code sources and builds them.



Why use atomic systems?

By having components managed “together” as 
if it is a singular unit, it is possible to create 
an absolutely reproducible system that can be 
heavily tested and hardened.



Why not use atomic systems?

Not everyone needs exactly the same software 
set, so it would be very difficult to satisfy 
everyone with a purely atomic system 
intended for general purpose use. Without a 
means to install new software, it becomes 
pretty useless.



Is there a good compromise?

Generally speaking, there’s a common set of 
functionality that needs to be present on 
every system.

Perhaps, if that core was atomically managed 
and there was a way to layer more things on 
top...



Enter Project Atomic and Containers!



Project Atomic is Red Hat’s approach to this 
particular problem. Essentially, a very minimal 
subset of components are composed into a 
system tree that are managed as a singular 
unit, and containers are used to add 
functionality.

Project Atomic



Wait, what… Containers?

Containers are extremely minimal environments designed to run an 
application/service or a set of them with a (normally) small degree of 
isolation, usually just lack of awareness of the actual system.

Containers are typically used to set up instances of services that would 
normally manipulate large parts of the underlying system in a manner that is 
safe and distributable. Example implementations are Virtuozzo, LXC, Docker, 
and systemd-nspawn.



Hold on! Docker?!

So, Docker is a mechanism for constructing and 
maintaining containers of applications and services. 
Originally a wrapper around LXC, it now manages the 
necessary kernel functionality directly.

Most container implementations do not handle 
reproducible creation of containers. Docker does.



Project Atomic and Docker

Project Atomic utilizes Docker as a means to 
enable functionality to be layered on top of it. 
Without being able to reproducibly construct 
containers for software delivery, Atomic 
wouldn’t be useful as it is. 



Using Atomic web UI (Cockpit) to use containers

Demonstration



Atomic + Containers

Atomic makes it possible to have your cake and eat it too, 
by using Docker as the foundation for extending the 
capability of the platform instead of using standard 
packages, while guaranteeing that the core of the OS is 
stable and safe.

Additionally, Atomic is SELinux-enabled to enable 
confinement, as containers don’t normally contain.



Wait, containers don’t contain?!

It seems counterintuitive, but containers don’t inherently contain 
anything. Essentially, containers are “self-contained” only in 
execution, not total system environment. 

SELinux grants this security to containers by using its mechanism to 
enforce MAC (mandatory access control) to restrict what containers 
can do. Coupled with namespaces (another kernel feature that 
isolates environments), containers can actually contain!



So… how do I get Atomic?

You can get a “host image” for Atomic at the Project Atomic download page.

The Atomic Host is available in two freely available flavors:

● Fedora Atomic Host (derived from the latest Fedora code)
● CentOS Atomic Host (derived from Red Hat Enterprise Linux Atomic Host)

Additionally, there is an enterprise-grade supported option from Red Hat:

● Red Hat Enterprise Linux Atomic Host, which is marketed as a part of a 
system called the Red Hat Atomic Enterprise Platform

http://www.projectatomic.io/download/


Sources and additional resources
● Red Hat Customer Portal: Introduction to Linux Containers: https://access.redhat.com/articles/1353593
● Daniel Walsh: Container security: Do containers actually contain? Should you care?

○ Presentation: https://fedorapeople.org/~dwalsh/Presentations/ContainerSecurity/#/
○ YouTube: https://www.youtube.com/watch?v=a9lE9Urr6AQ

● Daniel Walsh: Super Privileged Containers
○ Presentation: https://fedorapeople.org/~dwalsh/Presentations/SPC/#/
○ YouTube: https://www.youtube.com/watch?v=dM2Fc53Dtd4

● Adam Miller: Immutable infrastructure, containers, & the future of microservices: http://videos.cdn.redhat.
com/summit2015/presentations/12017_immutable-infrastructure-containers-the-future-of-microservices.pdf

● Aditya Patawari: Running your containers in a sane environment, Project Atomic: https://www.youtube.com/watch?
v=XCw5sViG2cw

● Project Atomic: Introduction to Project Atomic: http://www.projectatomic.io/docs/introduction/
● Matthew Micene: Running Cockpit as a service in Fedora 22 Atomic Host: http://www.projectatomic.io/blog/2015/06/running-

cockpit-as-a-service/
● Jason Brooks: Running a Containerized Cockpit UI from Cloud-init: http://www.projectatomic.io/blog/2015/08/running-a-

containerized-cockpit-ui-from-cloud-init/
● Project Atomic: http://www.projectatomic.io/
● Project Atomic: Nulecule Specification: http://www.projectatomic.io/docs/nulecule/
● Project Atomic: Atomic App: http://www.projectatomic.io/docs/atomicapp/
● Fedora Atomic Host: https://getfedora.org/cloud/download/atomic.html
● CentOS Atomic Host: https://wiki.centos.org/SpecialInterestGroup/Atomic/Download/
● Red Hat Atomic Enterprise Platform: https://access.redhat.com/products/red-hat-atomic-enterprise-platform

https://access.redhat.com/articles/1353593
https://fedorapeople.org/~dwalsh/Presentations/ContainerSecurity/#/
https://www.youtube.com/watch?v=a9lE9Urr6AQ
https://fedorapeople.org/~dwalsh/Presentations/SPC/#/
https://www.youtube.com/watch?v=dM2Fc53Dtd4
http://videos.cdn.redhat.com/summit2015/presentations/12017_immutable-infrastructure-containers-the-future-of-microservices.pdf
http://videos.cdn.redhat.com/summit2015/presentations/12017_immutable-infrastructure-containers-the-future-of-microservices.pdf
http://videos.cdn.redhat.com/summit2015/presentations/12017_immutable-infrastructure-containers-the-future-of-microservices.pdf
https://www.youtube.com/watch?v=XCw5sViG2cw
https://www.youtube.com/watch?v=XCw5sViG2cw
https://www.youtube.com/watch?v=XCw5sViG2cw
http://www.projectatomic.io/docs/introduction/
http://www.projectatomic.io/blog/2015/06/running-cockpit-as-a-service/
http://www.projectatomic.io/blog/2015/06/running-cockpit-as-a-service/
http://www.projectatomic.io/blog/2015/06/running-cockpit-as-a-service/
http://www.projectatomic.io/blog/2015/08/running-a-containerized-cockpit-ui-from-cloud-init/
http://www.projectatomic.io/blog/2015/08/running-a-containerized-cockpit-ui-from-cloud-init/
http://www.projectatomic.io/blog/2015/08/running-a-containerized-cockpit-ui-from-cloud-init/
http://www.projectatomic.io/
http://www.projectatomic.io/docs/nulecule/
http://www.projectatomic.io/docs/atomicapp/
https://getfedora.org/cloud/download/atomic.html
https://wiki.centos.org/SpecialInterestGroup/Atomic/Download/
https://access.redhat.com/products/red-hat-atomic-enterprise-platform


The End
Any Questions?


