
Unshrouding Systemd
Neal Gompa (Conan Kudo [ニール・ゴンパ])

Who am I?
● Professional

technologist
● Humble maintainer of a

handful of packages in
the Fedora Project

● Diligent follower of the
telecommunications
industry

● Associate SQA Engineer
at Datto, Inc

Contact Points:
● Twitter:

@Det_Conan_Kudo
● Google+: +NealGompa

https://admin.fedoraproject.org/pkgdb/packager/ngompa/
https://admin.fedoraproject.org/pkgdb/packager/ngompa/
https://admin.fedoraproject.org/pkgdb/packager/ngompa/
https://admin.fedoraproject.org/pkgdb/packager/ngompa/
https://twitter.com/Det_Conan_Kudo
https://twitter.com/Det_Conan_Kudo
https://plus.google.com/+NealGompa

What is systemd?
According to Wikipedia:
● systemd is a suite of system management

daemons, libraries, and utilities designed as
a central management and configuration
platform for the Linux computer operating
system.

Err, daemons?
If you are coming from the Windows world, you know “daemons” as “services”.
Or if you’re really old-school, these are analogous to DOS TSR (terminate and
stay resident) applications.

Pronounced as DAY-mon or DEE-mon, these are special applications that spin
up a process that remains in the background to do something.

Note that “dæmon” is not considered a valid spelling, and actually is
pronounced differently (DAH-mon), though you will hear speakers of Germanic
languages other than English say it this way since “ae” still is pronounced that
way in most languages.

Major features of systemd
● Low-level logging functionality from startup to shutdown
● Highly efficient process and service management with socket and timer

activation
● Efficient, simple, and flexible network management
● Device enumeration and management
● User login and session management
● Service oriented framework for launching and managing containers
● Hostname management
● Time and date management
● Locale management
● “99%” compatibility with SysVinit scripts
● And much more...

Whoa… That’s too much!
So… The truth is that systemd doesn’t really do all those
things itself. Systemd is actually a collection of applications
(roughly 70 of them) that do each of those things. A great
deal of these components are optional, and don’t have to be
used.

Die-hard Unix folks can lower their pitchforks, as systemd
isn’t one big monolithic beast that does everything!

I’ve never heard of this, prove it!

Err, okay…
● Logger: systemd-journald
● Service manager: systemd
● Network management: systemd-networkd
● Device management: systemd-udevd
● Login & sessions: systemd-logind
● Container framework: systemd-nspawn, systemd-machined
● Hostname management: systemd-hostnamed
● Time & date management: systemd-timedated
● Locale management: systemd-localed
● And of course, there are even more examples...

An example of a systemd service
[Unit]

Description=Bandwidthd Network Traffic Monitor

After=network.target

[Service]

Type=forking

PIDFile=/run/bandwidthd.pid

ExecStart=/usr/sbin/bandwidthd

[Install]

WantedBy=multi-user.target

The same one, as sysvinit script
#! /bin/bash

bandwidthd

chkconfig: - 90 26

description: Activates/Deactivates bandwidthd network traffic monitor

PROGNAME=/usr/sbin/bandwidthd

Source function library.

. /etc/init.d/functions

if [! -f /etc/sysconfig/network]; then

 exit 0

fi

. /etc/sysconfig/network

if [-f /etc/sysconfig/bandwidthd]; then

 . /etc/sysconfig/bandwidthd

fi

Check that networking is up.

["${NETWORKING}" = "no"] && exit 0

Continued on the right →→→→→→→→→→→→→→→

See how we were called.

case "$1" in

 start)

 #Register to dns

 echo -n $"Starting Bandwidthd network traffic monitor: "

daemon $PROGNAME $OPTIONS

RETVAL=$?

echo

 [$RETVAL -eq 0] && touch /var/lock/subsys/bandwidthd

exit $RETVAL

 ;;

 stop)

 echo -n $"Shuting down Bandwidthd network traffic monitor: "

killproc `basename $PROGNAME`

 RETVAL=$?

echo

 [$RETVAL -eq 0] && success || failure

echo

 [$RETVAL -eq 0] && rm -f /var/lock/subsys/bandwidthd

exit $RETVAL

 ;;

Wait, there’s still more!
 status)

status $PROGNAME

;;

 condrestart)

 if [-f /var/lock/subsys/bandwidthd]; then

 $0 stop

 $0 start

 fi

 ;;

 restart|reload)

$0 stop

$0 start

;;

 *)

 echo $"Usage: $0 {start|stop|restart|reload|status}"

 exit 1

esac

exit 0

Wait, what’s socket activation?

Socket activation is when a service isn’t activated and
running until data comes in on a specific socket (typically
an internet socket). When a connection is established,
systemd activates the service and passes control of the
socket to the service. When no more clients are connected
to the socket, the service shuts down until it is needed
again.

Socket-activated service example

cockpit.service
[Unit]

Description=Cockpit Web Server

Documentation=man:cockpit-ws(8)

[Service]

ExecStartPre=/usr/sbin/remotectl certificate --ensure
--user=root --group=cockpit-ws

ExecStart=/usr/libexec/cockpit-ws

PermissionsStartOnly=true

User=cockpit-ws

Group=cockpit-ws

cockpit.socket
[Unit]

Description=Cockpit Web Server Socket

Documentation=man:cockpit-ws(8)

[Socket]

ListenStream=9090

[Install]

WantedBy=sockets.target

And timer activation?
Timer activation functions similarly to socket
activation, except that it uses a timing schedule
instead of sockets to trigger services. Timing
granularity goes down to one second.

Essentially, it’s a more efficient cron job
system.

Timer-activated service example

dnf-makecache.service
[Unit]

Description=dnf makecache

[Service]

Type=oneshot

Nice=19

IOSchedulingClass=2

IOSchedulingPriority=7

Environment="ABRT_IGNORE_PYTHON=1"

ExecStart=/usr/bin/dnf -v makecache timer

dnf-makecache.timer
[Unit]

Description=dnf makecache timer

ConditionKernelCommandLine=!rd.live.image

[Timer]

OnBootSec=10min

OnUnitInactiveSec=1h

Unit=dnf-makecache.service

[Install]

WantedBy=basic.target

Okay… So how do I use it?
● Installing your own unit files

○ /etc/systemd/system
■ After adding files, run systemctl daemon-reload

● Overriding configuration of system provided services
○ Distribution provided services are in /usr/lib/systemd/system

■ Can be overridden by putting override *.conf files in /etc/systemd/system/<name>.
<type>.d/

● After adding files, run systemctl daemon-reload

● Start/stop/enable/disable/etc. services
○ systemctl {start,stop,restart,reload,enable,disable} <name>.<type>

■ “.service” is assumed when type isn’t defined

Journaling in systemd
In a system using systemd properly, the
journaling mechanisms in Linux are extended
to cover every stage of the system’s life (system
startup, online state, and system shutdown).

Systemd also presents a unified journal
interface: journalctl

Using the journal
In pre-systemd systems, accessing the journal was a matter of locating the right
log file and using tools like grep to “parse” it.

Through systemd-journald, all journal data is stored in an ACID-like database
that can be queried through an API or journalctl. While the other files will likely
also exist on the system, journalctl is a very handy tool to use to read logs
directly.

The journald journal is a special kind of data store that allows it to remain safe
to use even when writes fail, which isn’t always true for legacy journal schemes.

And there’s a lot more!
These are some of the basics of systemd that
every Linux user will want to know about.
There’s a lot more that can be done through
various capabilities in systemd and its
associated services and APIs.

But I use GUIs to do stuff!
Well… I’d argue that you don’t need one, with
how easy the tools are, but...

Cockpit, the web GUI

Aside from Cockpit, there are these GUI programs:
● systemd-ui

○ A bit old and unmaintained, but still very good
● KDE systemd applets

○ KDE 4 and KDE 5 have built-in applets in the System Settings configuration panel
● GNOME system configuration

○ GNOME’s system configuration programs already utilize systemd APIs to manage parts of
the system

Other desktop environments may have their own equivalents...

Desktop GUIs

Demonstration
Cockpit GUI and Systemd CLI

Some additional resources...
● Systemd Wikipedia page: https://en.wikipedia.org/wiki/Systemd
● Systemd website: http://www.freedesktop.org/wiki/Software/systemd/
● Systemd documentation center: http://0pointer.de/blog/projects/systemd-docs.html
● Lennart Poettering: Rethinking PID 1: http://0pointer.de/blog/projects/systemd.html
● Lennart Poettering: Why systemd?: http://0pointer.de/blog/projects/why.html
● Ben Breard & Lennart Poettering: Demystifying systemd

○ YouTube recording: https://www.youtube.com/watch?v=S9YmaNuvw5U
○ PDF slides: http://videos.cdn.redhat.com/summit2015/presentations/12720_demystifying-systemd.pdf
○ This presentation was shamelessly inspired from it

● Fedora Project: SysVinit to Systemd Cheatsheet: https://fedoraproject.
org/wiki/SysVinit_to_Systemd_Cheatsheet

● Cockpit Project: Cockpit Guide: http://files.cockpit-project.org/guide/latest/

https://en.wikipedia.org/wiki/Systemd
http://www.freedesktop.org/wiki/Software/systemd/
http://0pointer.de/blog/projects/systemd-docs.html
http://0pointer.de/blog/projects/systemd.html
http://0pointer.de/blog/projects/why.html
https://www.youtube.com/watch?v=S9YmaNuvw5U
http://videos.cdn.redhat.com/summit2015/presentations/12720_demystifying-systemd.pdf
https://fedoraproject.org/wiki/SysVinit_to_Systemd_Cheatsheet
https://fedoraproject.org/wiki/SysVinit_to_Systemd_Cheatsheet
https://fedoraproject.org/wiki/SysVinit_to_Systemd_Cheatsheet
http://files.cockpit-project.org/guide/latest/

The End
Any Questions?

