
Book reviewBook review

Becoming a better Becoming a better
programmerprogrammer
by Peter Goodliffeby Peter Goodliffe

Common sense and care

● Becoming a better programmer is
not a magic feat

● It takes common sense and care

● Coding is probably 10% of the time
of a software engineer

● The rest is where you can make a
difference.

● The book describes organization,
habits, environment, style, tools,
and work patterns

First, do no harm
● You have to care

● Fight the temptation of cutting corners

● Old saying: an amateur...

– Never has time to do it right

– Always has time to redo it

● Not just for code, but for all the lifecycle

● If you don't care enough, you will harm:

– Yourself

– Your organization

It starts with code
● Code quality makes or breaks a software-dependent company

● Most companies these days depend on software

● Code is written once then maintained forever

● What you want is code that is easy to maintain, thus:

– Understandable

– Not too smart

– Robust (easy to modify in small pieces)

– Testable

– With at least some doc

Don't underestimate presentation
● Code should have a standard presentation (formatting, blanks,

style).

● Which one?

– It doesn't matter, just pick the same one across a project

– Ban gratuitous style variations (generate dummy changes)

● Have mercy on your maintainers

– People who open your files shouldn't be shocked

– Finding what you are looking for in the code should be painless.

The magic code improver command
● The best command to

improve code in one line:

rm

● Removed code has no bug!

● Remove unnecessary code.
Deduplicate, refactor.

● Ban copy-and-paste coding.

● When you first see a certain
problem, be certain you didn't
see it first.

● Find out existing solutions.

● No existing solution? Neither
OSS nor commercial?

– Either you are on the cutting
edge...

– Or you are doing something
wrong.

The book has cartoons!

Dealing with existing code
● Existing code can be wonderfully written...

● Or it can be stuff inherited from a cheap contractor that got fired after
the original company went under.

● When maintaining existing code, make it testable

● Add unit code, system code, automated build

● Document aberrations and gotchas (and good stuff too!)

● Add order to the chaos

● What about your existing code? Have a process to on-board newcomers.

● Good luck.

Impressing our little friends
● Every coder wants to show off...

● … By writing super-clever code.

● Drawback 1:

– Few if any people will understand the clever parts

– So now you will maintain this code for life. Gratz.

● Drawback 2:

– When you are debugging code, you must be twice as smart as when
you write it.

– So if you write code as smartly as you can, you will never be able to
debug it by definition.

● Conclusion: DON'T.

Look carefully at bad projects
● Engineers love reading about disasters. Why?

● Train wrecks are always entertaining, sure, but there is more.

● Try to extract the root causes or anti-patterns of disasters you
come across

● The chemistry of
learning:
Sc + Sw - > X
(Scars + Sweat - >
Experience)

● Read
www.thedailywtf.com

http://www.thedailywtf.com/

Learn the signs of bad code
● Code inspection should give the smallest possible WPM/LoC

(WTFs per minute per line of code)

● Does the code have:

– Different patterns for the same operation a few lines apart?

– Inconsistent naming conventions?

– Booleans that have values TRUE, FALSE or FILE NOT FOUND?

– Comments like
i++; // increments the index
but nothing explaining WHY a complex function exists?

– APIs that read like a bad Greek translation of War and Peace?

– Exceptions and error codes that are ignored?

● Yep, we got a live one.

Be prepared
● Only the paranoids survive! Don't say "it won't happen."→

● Things will go wrong:

– Input data will be garbage Sanitize it→

– Network will "notwork." Check for errors and retry→

– API calls will fail Test every call, use exceptions→

– Your code will be killed -9 or run during a power failure Don't expect a clean →
state.

● Robust code should expect the worst and be tested in failure conditions.

● But... Don't test for errors you cannot deal with, e.g., logger errors.

● Windows famous message:
The error processing code encountered an error.
Now what?

Test, or be sorry
● Ideally, write tests before code

● TDD: Tests become your
working documentation

● So comment each test case!

● Have a strategy to deal with
side effects such as writes to
DB, file

– Use mocks or similar

– Don't test your dependencies

● Tests should be repeatable and
push-button easy to run.

● Unit tests: for classes,
functions

– Checks my code

● Integration tests: For
subsystems

– Check my code calls yours
correctly

● System test: For full builds

– End-to-end

– Simulated inputs

Why have good tests?
● You will need it to code

well

– Tests solidify your
interfaces

– Bad coder's sign #1 :
Tests take too much
time to write

● Refactoring and
improving? Re-run the
tests

– Make sure you didn't
break code

– So you aren't afraid of
changing code.

● QA needs it too

New feature? Add a test!

The enemy:
 complexity

Impressing our little friends
● Every coder wants to show off...

● … By writing super-clever code.

● Drawback 1:

– Few if any people will understand the clever parts

– So now you will maintain this code for life. Gratz.

● Drawback 2:

– When you are debugging code, you must be twice as smart as when
you write it.

– So if you write code as smartly as you can, you will never be able to
debug it by definition.

● Conclusion: DON'T.

Keep it simple, keep it nice
● YAGNI: You ain't gonna need it. Resist the temptation of "in case

we decide to do X".

● DRY: Don't repeat yourself. No to copy-paste, yes to code libraries.

● Avoid premature optimization.

● Follow the Boy Scout Rule. Whenever you touch some code leave it
better than you found it.

● … Or at least less infuriating.

● Don't consider that bad stuff is set in stone.

– Bad stuff doesn't age well. Replacing it with good stuff costs less over
time

– True for code, tools, methods... and people.

Use version control
● Anything that takes you more than 5 minutes should be VCed.

● At home:

– Don't want your own Git server? Use RCS. Or Subversion.

– If you edit it, version it!

● "What version control do you use?" is question #1 when joining a new team.

● Learn your VC inside and out.

Intercommunication
● You write code for other people to read

● The computer can deal fine with binary, thank you.

● Nobody is an island. You need good communication.

– Develop good people skills (can be done. Really.)

– Be humble. Even Von Braun and Feynman were humble... often.

– Be nice. Especially when you are right.

– Close the email client or tab when you are angry. Don't add to the
stupid.

– Maintain email discipline: Be precise, be clear, be concise, give
sufficient context, use good grammar.

Questions?Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

