
1

The Billion-Dollar LessonThe Billion-Dollar Lesson

Datto Datto
InfrastructureInfrastructure

Presented By: Fred Mora

Agenda

■ The lesson: Complexity kills

■ The classroom: IBM's OS/360 project

■ The student: Fred Brooks

■ The textbook: The Mythical Man-Month

■ How software developers integrated the lesson: OOP

Complexity kills

■ A limit of human intellectual performance is short-term memory

■ In software, this means "what do I need to know in order to make
use of something"

■ Very often, an existing tool or library is so complex we are
compelled to write our own

■ And thus, we constantly reinvent the wheel

■ But how bad is large scale complexity, really?

■ Surely, a high-level team can deal with it?

■ Well... Not really.

IBM's OS/360 project

■ In the 60s, each new mainframe model was completely different
from all others

■ New architecture, instruction set, programming language, OS, tools...

■ Huge costly problem

■ IBM formed a task group to create a solution

■ They were told to stay in Stanford, CT, motel for 8 weeks to come
up with a recommendation

■ Their report outlined a future general, evolutive architecture

■ From the task group report, IBM decided to create a new family of
machines called IBM 360.

■ Mainframes of this family would range from very low to very high
end yet be compatible.

■ The common OS was called OS/360.

http://www-03.ibm.com/ibm/history/ibm100/
us/en/icons/system360/words/

OS/360 early problems

■ The hand-picked team of OS developers was very large

■ The hardware was simulated (at slower speeds) on
existing mainframe

■ System 360 assembly code could be run and tested

■ Early on, communication problems appeared:

■ Initial tests showed memory management
problem

■ Coders used the worst possible way to manage
memory

■ This was because management discouraged use of
precious core memory

■ But disk paging is even worse.

OS/360: The "fix"

■ Clearly, problems were due to incomplete understanding of
memory alloc

■ Solution: more doc!

■ Each subsystem was therefore documented in often-updated doc
formatted on mainframes and printed in 3-ring binders

■ Deltas were distributed every day

■ A vacation or absence meant hundreds of pages of delta to
remove and insert.

■ The doc provided low-level details of each subsystem

■ Predictable result: TMI

OS/360: The outcome

■ OS/360 ended up being extremely costly.

■ It was considered a success, but remained buggy

■ It reached a point where each fix introduced another bug

■ The hardware was remarkable, though.

■ S/360 and OS/360 were introduced in 1964

■ IBM hired tens of thousands of new employees and sold thousands of S/360 (1000 per
month as early as 1966)

Fred Brooks

■ Fred Brooks was the manager of the OS/360 project

■ He was interested in software architecture and methods

■ He considered that OS/360 was a costly lesson for all developers

■ The lesson is applicable to all software projects

■ Tuition paid by IBM – enjoy.

■ Brooks wrote a book summarizing the teachings of OS/360: The Mythical Man-Month

The Mythical Man-Month

■ Published originally in 1975

■ Considered required reading for all budding
software developers

■ Sold 250,000 copies – astounding for a
software project management book

■ Twentieth Anniversary Edition, augmented,
published in 1995

■ Sadly, 90% of the pitfalls and problems
reviewed in the book are still current.

Still the same old problems

■ The MMM gives examples in archaic languages such as PL/1...

■ …But the problems are still the same!

■ Since 1975, software as a discipline has seen very little progress
considering its importance

■ Computer science? HA!

■ Scientists review each other's work. Developers work in secrecy.

■ Scientists look at what works. Developers keep reinventing square
wheels

■ Scientists have a strict terminology. Developers have an imprecise,
trendy jargon.

■ Software is at best a cottage industry of craftsmen, not a scientific
discipline.

OOP, the answer to the OS/360 lesson

■ Developers are still making most of the same mistakes since 1975.

■ But one mistake (information overload) now has a solution (sort of): OOP

■ Object-Oriented Programming lets a library user focus on external interfaces

■ Class internals are, by design, black boxes

■ Data integrity can be guaranteed through accessors

■ But OOP models clash with other programming models. Example: RDBMS

■ Relational DB tables can be modelled though Object Relational Mapping (ORM)

■ But ORM still forces you to be aware of the underlying SQL, so it's a limited
solution.

