Regular expressions In
depth

Datto Engineering

Presented By: Fred Mora -
July 2014

B What are regexes

B What should you care
B Origins

B Syntax

B Greed is good

B Grouping and matching
B PHP and regexes

What are regular expressions?

B Regexes are a formal notation for representing set of strings

B A regex represents a machine or program that can emit certain
strings

B Such program is equivalent to a matcher for these same strings
B Regexes are:

B 2 human-readable notation

B a specification for string matching in many computer languages.

B Regexes are used to match and select text in files or string.

Why should you care

B Text is the main communication means between machines and
humans

B A browser in a GUI shows fancy text, but it's still text.

B Text is the best way to express complex ideas.

B Due to HTML and XML prevalence, text is also prevalent between
machines.

B Binary interfaces are limited to IPC within the same cluster

B Bandwidth is rarely so critical that you have to exchange only
binary buffers.

B So you will spend a lot of time handling text

B The first Unix machines came with text processors

B Early regex libraries shipped with Unix

B Basic Unix tools like sed, awk, grep use regexes

B Regexes are heavily used in Perl, and thus in PHP

Basic regex expressions

Regex

/abc/

/[a-c]l/

/[1-9A-Z]/

[[XYZT]/

/[0-9a-fA-F]/

\s/and \S

\d and \D

\w and \W

[:alnum:], [xdigit:], [:punct:]

/abc|def/

Comments

A normal string is a regex that matches itself. Not too useful.

Character classes are defined between brackets. A range is a class that matches
all characters between the boundaries. Here, matches a, b or c.

Compound range. Matches any char between 1 to 9 or Ato Z
Matches X, Y, Zor T
Matches anything but what's in the brackets (here, hex digits)

\s matches a white space. Matches a space, but also a tab, \r, \n
\S is the opposite, it matches a non-white space char

\d is the same as [0-9].
\D matches any non-digit char.

\W matches any “word” char as defined in Perl, that is, letter, digits and
underscore. \W is the opposite.

POSIX character classes. Respectively match alphanumerical chars, hexadecimal
digits, punctuation marks. There are others, e.qg., [:upper:] for [A-Z].

The pipe symbol means “pick one”. Example: /pet = cat|dog/ matches “pet =
cat” and “pet = dog”

Quantifiers

{n,m}
{n,
(n)

Scribble

Meaning

Dot - Any char

Zero or more time

Zero or one time

One of more times

N to m times
N or more times
Exactly n times

Example

/abc.e/ matches “abcde”, "abcXe”. A literal dot is escaped with

backslash, as in \.

/ab*c/ matches “ac”, “"abc”, "abbbbbbbc”

/ab?c/ matches “ac”, “"abc”, but not “abbc”

/ab+c/ matches “abc”, "abbc”, “"abbbbbbbc”

/ab{2,4}c/ matches “abbbc”
/ab{2,}c/ matches “abbbc”
/ab{2}c/ matches “abbc”

Scribble Meaning Example

Iy Start of string / "R/ matches “"Rapid”, "RegEx”
/M[A-Clolt/ matches "Bolt” and “Colt” but not “"Dolt”

$ End of string [[A-Z]\d{2}$/ matches "XB70” or "B52”, but not "F104" or "B1B”

Greed is good

B By default, quantifiers are greedy. That is, they match as many chars as they
can. Example:

/<a href=".*<\/a>/ matches the red portion of this HTML text:

Some links:

Our company
 0Our technology
Happy reading.

B In this case, the greedy match is probably not what was intended, The star
quantifier is greedy. Make it lazy with ? as follows:

/<a href=".*7?<\/a>/ matches the red portion of this HTML text:

Some links:

0Our company
 OQur technology
Happy reading.

Grouping and matching

B Groups are denoted by parentheses.

B Within the regex, the previously /-th matched group is denoted by \/

(\1, \2, etc.)
B Examples:
Regex Matches Groups

/(\W+)\s+\1/ “blah blah” '‘blah’
“foo foo” 'foo'
But not “foo bar”

[file:\s+(.+?), size:\s+(\d+)\s*([KMG]?)B/i “file: foo.txt, size: 123 kB” 'foo.txt', '123", 'k’
“File: bar, size: 45Gb” '‘bar’, '45', 'G’
“file: qux, size: 789 B” '‘qux', '789", "

B Note the | modifier for case insensitivity

Commenting regexes

B Even relatively simple regexes quickly start looking like a cat has jumped on the keyboard.
B If your code will be maintained by less enlightened coders, comment your regexes with the x modifier.
B Example:

B Before:
/file:\s+(.+7?), size:\s+(\d+)\s*([KMG]?)B/i

B After:
/file: # Literal
\s+ # One or more spaces
(.+7), # Group: ALl chars up to a comma
\s+ # One of more spaces
size: #lLiteral
\s+ # One of more spaces
(\d+) # Group: One or more digits
\s* # Optional space
([KMG]?) # Group: Optional multiplier
B

/X1

Coding examples in PHP

$regex = "/file: # Literal

\s+ # One or more spaces
(.+7), # Group: ALl chars up to a comma
\s+ # One of more spaces
size: #Literal
\s+ # One of more spaces
(\d+) # Group: One or more digits
\s* # Optional space
([KMG]?) # Group: Optional multiplier
B
/xi"; // x = commented regex, i = case-insensitive

$str = "file: bar, Size: 789 Kb\n";

preg match($regex, $str, $matches);
print print r($matches, true);

Run:

Array

(

=> file: bar, Size: 789 Kb
=> bar

789

=> K

WN RO
I
V

Coding examples in PHP - cont'd

$marker = 'Error SQL123';
$regex = "/$marker: Application (\w+) cannot access table (\w+)/";

$loglines =

}

file('log.txt'); // Read whole file in memory. NOT PRODUCTION CODE!
foreach ($loglines as $line) {
if (preg match($regex, $line, $matches) == 0) {
continue;

print "Problem with app ${matches[1]}, table ${matches[2]}\n";
// More processing

File log.txt:

2014-07-09
2014-07-09
2014-07-09
2014-07-09
2014-07-09
2014-07-09

10:
10:
10:
10:
10:
10:

:59 some line

:03 nope, still no matche

:11 Hey, look: Error SQL123: Application foobar cannot access table QUX, oh noes
:01 Not that one

:08 Another match: Error SQL123: Application baz cannot access table BLAH.

:40 And so on

Problem with app
Problem with app

foobar, table QUX
baz, table BLAH

References

B Some useful links:
B Perl regex tutorial: http://perldoc.perl.org/perlretut.html
B Online regex testers and debuggers:

B http://regexiOl.com/

B http://www.regexr.com/

B Don't overdo regexes. Some formats are too complex and need a
full-blown parser.

B About overly complex regexes:
“Some people, when confronted with a problem, think “I know, I'll use
regular expressions.” Now they have two problems.” - Jamie ZawinskKi
<jwz@netscape.com>, 12 Aug 1997/, alt.religion.emacs

http://perldoc.perl.org/perlretut.html
http://regex101.com/
http://www.regexr.com/
http://perldoc.perl.org/perlretut.html
http://regex101.com/
http://www.regexr.com/

Questions? .

