
1

Regular expressions in Regular expressions in
depthdepth

Presented By: Fred Mora –
July 2014

Datto EngineeringDatto Engineering

2

■ What are regexes

■ What should you care

■ Origins

■ Syntax

■ Greed is good

■ Grouping and matching

■ PHP and regexes

AgendaAgenda

What are regular expressions?

■ Regexes are a formal notation for representing set of strings

■ A regex represents a machine or program that can emit certain
strings

■ Such program is equivalent to a matcher for these same strings

■ Regexes are:

■ a human-readable notation

■ a specification for string matching in many computer languages.

■ Regexes are used to match and select text in files or string.

Why should you care

■ Text is the main communication means between machines and
humans

■ A browser in a GUI shows fancy text, but it's still text.

■ Text is the best way to express complex ideas.

■ Due to HTML and XML prevalence, text is also prevalent between
machines.

■ Binary interfaces are limited to IPC within the same cluster

■ Bandwidth is rarely so critical that you have to exchange only
binary buffers.

■ So you will spend a lot of time handling text

The origins

■ The first Unix machines came with text processors

■ Early regex libraries shipped with Unix

■ Basic Unix tools like sed, awk, grep use regexes

■ Regexes are heavily used in Perl, and thus in PHP

Basic regex expressions

Regex Comments

/abc/ A normal string is a regex that matches itself. Not too useful.

/[a-c]/ Character classes are defined between brackets. A range is a class that matches
all characters between the boundaries. Here, matches a, b or c.

/[1-9A-Z]/
/[XYZT]/
/[^0-9a-fA-F]/

Compound range. Matches any char between 1 to 9 or A to Z
Matches X, Y, Z or T
Matches anything but what's in the brackets (here, hex digits)

\s/and \S \s matches a white space. Matches a space, but also a tab, \r, \n
\S is the opposite, it matches a non-white space char

\d and \D \d is the same as [0-9].
\D matches any non-digit char.

\w and \W \w matches any “word” char as defined in Perl, that is, letter, digits and
underscore. \W is the opposite.

[:alnum:], [xdigit:], [:punct:] POSIX character classes. Respectively match alphanumerical chars, hexadecimal
digits, punctuation marks. There are others, e.g., [:upper:] for [A-Z].

/abc|def/ The pipe symbol means “pick one”. Example: /pet = cat|dog/ matches “pet =
cat” and “pet = dog”

Quantifiers

Scribble Meaning Example

. Dot - Any char /abc.e/ matches “abcde”, “abcXe”. A literal dot is escaped with
backslash, as in \.

* Zero or more time /ab*c/ matches “ac”, “abc”, “abbbbbbbc”

? Zero or one time /ab?c/ matches “ac”, “abc”, but not “abbc”

+ One of more times /ab+c/ matches “abc”, “abbc”, “abbbbbbbc”

{n,m}
{n,}
(n)

N to m times
N or more times
Exactly n times

/ab{2,4}c/ matches “abbbc”
/ab{2,}c/ matches “abbbc”
/ab{2}c/ matches “abbc”

Anchors

Scribble Meaning Example

^ Start of string /^R/ matches “Rapid”, “RegEx”
/^[A-C]olt/ matches “Bolt” and “Colt” but not “Dolt”

$ End of string /[A-Z]\d{2}$/ matches “XB70” or “B52”, but not “F104” or “B1B”

Greed is good

■ By default, quantifiers are greedy. That is, they match as many chars as they
can. Example:
/<a href=”.*<\/a>/ matches the red portion of this HTML text:

Some links:
Our company
 Our technology
Happy reading.

■ In this case, the greedy match is probably not what was intended, The star
quantifier is greedy. Make it lazy with ? as follows:
/<a href=”.*?<\/a>/ matches the red portion of this HTML text:

Some links:
Our company
 Our technology
Happy reading.

Grouping and matching

■ Groups are denoted by parentheses.

■ Within the regex, the previously i-th matched group is denoted by \i
(\1, \2, etc.)

■ Examples:

Regex Matches Groups

/(\w+)\s+\1/ “blah blah”
“foo foo”
But not “foo bar”

'blah'
'foo'

/file:\s+(.+?), size:\s+(\d+)\s*([KMG]?)B/i “file: foo.txt, size: 123 kB”
“File: bar, size: 45Gb”
“file: qux, size: 789 B”

'foo.txt', '123', 'k'
'bar', '45', 'G'
'qux', '789', ''

■ Note the i modifier for case insensitivity

Commenting regexes

■ Even relatively simple regexes quickly start looking like a cat has jumped on the keyboard.

■ If your code will be maintained by less enlightened coders, comment your regexes with the x modifier.

■ Example:

■ Before:
/file:\s+(.+?), size:\s+(\d+)\s*([KMG]?)B/i

■ After:

/file: # Literal
 \s+ # One or more spaces
 (.+?), # Group: All chars up to a comma
 \s+ # One of more spaces
 size: #Literal
 \s+ # One of more spaces
 (\d+) # Group: One or more digits
 \s* # Optional space
 ([KMG]?) # Group: Optional multiplier
 B
/xi

Coding examples in PHP
$regex = "/file: # Literal
 \s+ # One or more spaces
 (.+?), # Group: All chars up to a comma
 \s+ # One of more spaces
 size: #Literal
 \s+ # One of more spaces
 (\d+) # Group: One or more digits
 \s* # Optional space
 ([KMG]?) # Group: Optional multiplier
 B
/xi"; // x = commented regex, i = case-insensitive
$str = "file: bar, Size: 789 Kb\n";

preg_match($regex, $str, $matches);
print print_r($matches, true);

Run:
Array
(
 [0] => file: bar, Size: 789 Kb
 [1] => bar
 [2] => 789
 [3] => K
)

Coding examples in PHP – cont'd
$marker = 'Error SQL123';
$regex = "/$marker: Application (\w+) cannot access table (\w+)/";

$loglines = file('log.txt'); // Read whole file in memory. NOT PRODUCTION CODE!
foreach ($loglines as $line) {
 if (preg_match($regex, $line, $matches) == 0) {
 continue;
 }
 print "Problem with app ${matches[1]}, table ${matches[2]}\n";
 // More processing
}

File log.txt:

2014-07-09 10:08:59 some line
2014-07-09 10:09:03 nope, still no matche
2014-07-09 10:09:11 Hey, look: Error SQL123: Application foobar cannot access table QUX, oh noes
2014-07-09 10:10:01 Not that one
2014-07-09 10:10:08 Another match: Error SQL123: Application baz cannot access table BLAH.
2014-07-09 10:10:40 And so on

Run:

Problem with app foobar, table QUX
Problem with app baz, table BLAH

References

■ Some useful links:

■ Perl regex tutorial: http://perldoc.perl.org/perlretut.html

■ Online regex testers and debuggers:

■ http://regex101.com/

■ http://www.regexr.com/

■ Don't overdo regexes. Some formats are too complex and need a
full-blown parser.

■ About overly complex regexes:
“Some people, when confronted with a problem, think “I know, I'll use
regular expressions.” Now they have two problems.” – Jamie Zawinski
<jwz@netscape.com>, 12 Aug 1997, alt.religion.emacs

http://perldoc.perl.org/perlretut.html
http://regex101.com/
http://www.regexr.com/
http://perldoc.perl.org/perlretut.html
http://regex101.com/
http://www.regexr.com/

15Questions?

